If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-5p-7=0
a = 2; b = -5; c = -7;
Δ = b2-4ac
Δ = -52-4·2·(-7)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-9}{2*2}=\frac{-4}{4} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+9}{2*2}=\frac{14}{4} =3+1/2 $
| –6(x+3)=–6x-18 | | -1.7t^2+12t+75=0 | | 2(3x+8)=50+48 | | 18=5n+2-3n | | 1-8v+6v=-5 | | 34/2=136/n | | 0.3t^2+60t+75=0 | | c+0.85=c | | X+3/12=1/6+x-5/2 | | 21=y/5+12 | | -66=8x-10=38 | | (5x)+(9+x)=9x | | 1-2k=15 | | 10=9+m/14 | | 2+7k=-54 | | F(x)=3x^2-2x-5 | | 10x-1=4x+2 | | 35+40=x | | -4(8-3a)=-104 | | 20x-7=10x+3 | | -2+5n=-12 | | ((n-3)/4)+((n+5)/7)=(5/14) | | 9-z=13 | | 64=4(3n+1) | | 6x+7=8x=-13 | | -1+7b=-141 | | 30c-19c-63=0 | | 4/5x=16/15 | | (6x-2)/3=(5x+2)/4 | | m4+7=13 | | 3+8n=67 | | 4/5x-1(1/3)=2(1/3)x-3 |